Are we creating
JavaBeans™ or Java classes??

>

Let s define the differencell

Mani Jorda Garcia 28.3.2000 Page 1

7
1. WHAT IS A JAVABEAN?

> Reusable software components that can be visually
manipulated in builder tools to create applications.

» They can be simple components, like a button, or can be more
complex software components like a calendar:

4| December-1996 |
Su Mo Tu We Th Fr Sa
1 2 3 4 &5 B 7
8 8 10|11 12 13 14
Okay 15 16 17 18 198 20 21
22 23 24 25 26 27 28
28 30 31

I'I2.l"|'l 1983:

e Fig 1. JavaBeans examples

Mani Jorda Garcia 28.3.2000 Page 2

2. WHAT IS THE DIFFERENCE 0)
BETWEEN BEANS AND CLASS
LIBRARIES?

) projeed

ALY

> The difference is INTROSPECTION.

- Introspection is what builder tools use to look inside a
Bean and determine its properties and behavior.

- Beans publish their attributes and methods through special
method signature patterns that are recognized by beans-
aware application construction tools.

- BASICALLY, JAVABEANS ARE WHAT BUILDER
" TOOLS USE TO CREATE APPLICATIONS.

Mani Jorda Garcia 28.3.2000 Page 3

3. WHY DOES THE TOOL NEED
TO LOOK INSIDE THE BEAN?

> To know which are the methods and the properties defined
in the Bean and to create the respective editors to manage
those methods and properties.

i

Mani Jorda Garcia 28.3.2000 Page 4

Stopm) proleed
4. COULD I ADD MY JAVACLASS "/”Q””” B““‘fl‘*\\

TO THE COMPONENT PALETTE OF THE TOOL?

> It is true that a Javabean is defined following standard
design patterns that the tool can recognize.

> But it is also true that you CAN CREATE your Java classes,
and ADD them to the tool, even if they are not designed
following the design patterns.

To do so, we need to create a complementary Java class
extended from BeanInfo class, defining the methods and
properties we have used in our class, and add it to the tool.

i

Mani Jorda Garcia 28.3.2000 Page 5

a

_—

5. CONSEQUENCES ﬁggg@rl i Ql@\&\

> Two consequences are derived from the above definitions:

1. If we use a Builder tool, it is better to think of creating
Beans rather than Java classes, to take advantage of
the possibilities that tools provide:

- Property editors automatically created.
- Easy management of events and listeners.

2. If we dont know if we are using a tool, we can define
our elements as Java classes, in which case:
- Properties are read from an external file.

Later on, we could add them to the tool palette and
specify the corresponding BeanInfo class.

Mani Jorda Garcia 28.3.2000 Page 6

©. JAVABEANS™ ADDITIONAL
INFORMATION

6.1 JAVABEANS FEATURES

1. They can be instantiated.

A Javaclass can be instantiated if it is neither an
interface nor an abstract class.

A class is an interface when it is defined like that,
and it is abstract when contains any abstract method
or variable.

-

Mani Jorda Garcia 28.3.2000 Page 7

2. They contain a constructor method, even if it is an empty
method.

3. They are persistent (must implement either a serializable or
externalizable interfaz).

4. They follow a standard design pattern defined by five rules.

5. They use the event delegation model.

Mani Jorda Garcia 28.3.2000 Page 8

6.2 BEANS ARCHITECTURE

Beans are composed of three elements:

1. Properties

2. Methods
3. Events

> Properties define the attributes of the Bean.

> Methods are used to set the Beans properties and to
define and receive events.

> Events are the vehicle between Beans, as well as
between Beans and containers.

Mani Jorda Garcia 28.3.2000 Page 9

6.3 PROPERTIES

YV V.V V V V

Property types

Simple (numbers, characters and strings)
Boolean

Array

Indexed

Bound
Constrained

Mani Jorda Garcia

28.3.2000 Page 10

6.3.1 BOUND AND
CONSTRAINED PROPERTIES

> A Bound property is a property that notifies any
listeners of changes in the property s value.

The listener notifies other components of changes.
The listening component then has the opportunity to respond
to the change in the property s value.

> A Constrained property is a property in which a change
to the property value can be vetoed by another
component that is listening for changes in the
property s value.

Mani Jorda Garcia

28.3.2000 Page 11

6.3.2 PROPERTY EDITORS

A property editor is an editor for changing property
values at design time.

They vary from one IDE to another, but typically appear
as a top-level dialog box.

They can edit a single property at a time or the entire
component at once (which is called component
customizes).

Component customizers present a dialog box or panel that
lets the user set many properties at once.

Mani Jorda Garcia

28.3.2000 Page 12

6.4 METHODS

They are mainly used:
- to read/write beans properties:
- get (), set (),is() methods
- to handle bean events:
- Notifying the actionlistener that an event has ocurred

- Implementing the action associated to that event.
- Notifying other beans.

Mani Jorda Garcia 28.3.2000 Page 13

