
Page 1 of 5

SL Technical note: last modified 02/03/01 by sjackson on behalf of the StopMI team

The OPController

1. What is it?
The OPController was conceived to attempt to give a standard way for developers in SL to organise
their callbacks (listeners in Java terms). The aim was to effectively separate the visual part of the
application (ie the panel with buttons, lists etc) from the code that would perform tasks in response to
users’ requests (ie a button press). In addition, the controller attempts to ease the burden of setting up
potentially hundreds of listeners and gives the developer one method that will perform this task
automatically. It is hoped that developers who choose the OPController method of building GUIs, will
produce well structured, clearly defined, and standard applications.

2. What’s wrong with the normal method of ‘controlling’ my application?
Generally, developers will develop classes that encapsulate both GUI components (eg buttons) and the
corresponding event listeners.

This is normally the default for users of a GUI tool such as JBuilder (although the syntax differs
slightly). The alternative, is to collect the event listeners in a separate class like this:

Use of this method, clearly separates the actions from the GUI, and makes the application’s action code
clearly defined and easily maintainable (ie to fix a bug, the developer doesn’t need to wade through
hundreds of lines of irrelevant code to find the problem!) It should be made clear at this point, that
choosing to separate the actions from the GUI components does not follow the object oriented nature of

Application

MyPanel1 implements
ActionPerformedListener

Create button1
addActionPerformedListener(this)

…..

actionPerformed(){
… code goes here

}

MyPanel2 implements
ActionPerformedListener

Create button1
addActionPerformedListener(this)

…..

actionPerformed(){
… code goes here

}

Application

MyPanel12
Create button1
addActionPerformedListener(myEvLsner)

MyEventListener implements
ActionPerformedListener

actionPerformed(){
… code goes here

}

MyPanel1
Create button1
addActionPerformedListener(myEvLsner)

Page 2 of 5

SL Technical note: last modified 02/03/01 by sjackson on behalf of the StopMI team

Java, and Java purists should stop reading here! The potential advantages of doing this however, may
make you decide to choose this method.

With this arrangement, we satisfy the first wish made in section 1 – To separate the code from the GUI.
We still however, need to attach many callbacks to our components. This is were the OPController
framework can be used.

3. The OPController
The OPController, is basically a generic listener that can also hold other information pertaining to the
actions of an application. In its basic form, the controller has no listening capabilities. Therefore, in
order to create a useful controller, you will need to extend the base class, and implement the listeners
you’re interested in.

In Java terms this equates to the following:

MyController extends OPController implements ActionListener

Stating that you will implement the ActionListener interface, means that you must also implement the
actionPerformed() method to collect the resulting events.

Now that your controller has ActionListener capabilities, you can call one of the methods in the
controller (inherited from OPController) to register your panel with this controller. The following
methods are currently available in the OPController.

• addListenersNeeded(Container)
• Use this method to add listeners for the interfaces defined by your controller to all children of

the given container. Normally the container is an OPPanel, but it could be a menu for
example.

• addListenersNeeded(Container, Class[])
• Use this method to add listeners for the specified interfaces to all children of the given

container. Of course, your controller will need to implement the specified interfaces for this to
work. An example here would be

myController.addListeners(myPanel,new Class[]{ActionListener.class});

• addListenersNeeded(Vector)
• Use this method to add listeners for the interfaces defined by your controller to the given

components (contained in the Vector).
• addListenersNeeded(Vector, Class[])

• Use this method to add listeners for specified interfaces defined by your controller to the given
components (contained in the Vector). Again, your controller must implement the given
listeners.

Normally, you would use the first variant of the addListenersNeeded function. The other methods are
supplied for special cases.

4. Other ‘Objects’
As well as managing callbacks for GUI components, the controller also has the facility to store
references to ‘Objects’. Anybody who has written Java applications will know that passing references

MyPanel

MyController

ActionPerformed();

ActionListener

ActionPerformed();

Page 3 of 5

SL Technical note: last modified 02/03/01 by sjackson on behalf of the StopMI team

to arbitrary objects between different components of an application can cause considerable problems.
Theoretically, this reference problem can generally be solved by good, structured design of the OO
hierarchy. In reality, programmers of new Java software in SL will probably opt for a method similar
to the one supplied by the OPController, where they can expose references just like they do in ‘C’.
That is not to say, that objects in the controller are akin to ‘C’ global variables however!

The OPController solution to this problem is this. If you inform the OPController of the existance of
an Object, by passing its reference, the controller code (ie your code) can access this object by querying
its controller. For example, if I have an object of type ‘CurrentUser.class’, and I have two controllers
(c1 & c2) that wish to examine this class, you would have something like the following:

CurrentUser user;
c1.addObjectReference(user);
c2.addObjectReference(user);

From anywhere within the controller, it is then possible to display the user information like this:

CurrentUser user = (CurrentUser)(this.getObject(CurrentUser.class));
System.out.println(“CurrentUser::”+user);

The more astute Java programmers, will be thinking “what if I have two objects of the same class?”.
The answer is that, at the moment, you can’t! Therefore, if you want to pass an object reference to a
controller, it needs to be a unique class. This in itself is not a bad thing, as it may encourage developers
to encapsulate data and methods in class files, where they might otherwise have not done so.
Nevertheless, this shortcoming still exists, and may be addressed in the future if demand dictates.

5. One for all, or all for one?
Given the design of the OPController, you have the freedom to organise your panels, objects and
controllers in any way you wish. You could for example, have an application with 6 OPPanels
contained in a tabbed pane, each with its own controller which will be given Object references to the
objects it needs to act on.

Application

Object1 Object2

Panel2 PanelXPanel1

Controller1 Controller2 ControllerX

Page 4 of 5

SL Technical not

On the other hand, you could choose to have one controller for your entire application like this:

Whichever way you choose depends

6. Writing the callbacks
The way in which you will write you
for efficiency reasons, you may wan
countless if/else combinations for la
convenience functions to discover w

• getOPPanel(Object obj)
• This function will return a r

(which should be a GUI com
this to work, you should ha

 ‘myController.addL

Once you know the parent

Public void actionPerf
// get the annonymo
OPPanel parent = ge

// find which panel
if(parent instanceo

// we know it
MyPanel myP =
// find the e
if(e.getSourc

// do s
}

}else if(parent ins
// we know it
MyPanel2 myP
//find the ex
if(e.getSourc

// do s
}

}
// etc

You should see, that using
on them accordingly.

• getOPPanel(Class toSea

Application

Object1

Panel2 PanelXPanel1

Co
ntroller
e: last modified 02/03/01 by sjackson on behalf of the StopMI team

 on the application and is up to you.

r callbacks is down to you. It’s important to note however, that
t to determine which Panel an event was fired from (this avoids
rge GUIs). In order to facilitate this, the controller provides some
ho is firing the events. These are as follows:

egistered OPPanel, which is the visual parent of the given object
ponent reference obtained from the event source). In order for

ve added the component through the function

istenersNeeded(myMainP)’.

of the object, you can create your event handler as follows:

ormed(ActionEvent e){
us parent
tOPPanel(e.getSource());

 it came from
f MyPanel){
 came from MyPanel
 (MyPanel)parent;
xact component
e() == myP.button1){
omething

tanceof MyPanel2){
 came from MyPanel2
= (MyPanel2)parent;
act component
e() == myP.text1){
omething

this method, you can separate events from different panels and act

rchFor)

Object2

Page 5 of 5

SL Technical note: last modified 02/03/01 by sjackson on behalf of the StopMI team

• This function will return a registered OPPanel, which has the same class as the given
argument. So, if you had a distinct class for you panel, called ‘MainPanel.class’, and you
added it to the controller by performing ‘myController.addListenersNeeded(myMainP)’, you
can retrieve a reference to this panel in you callback. With this reference, you can create, for
example, an ActionListener callback like this:

Public void actionPerformed(ActionEvent e){
MainPanel myMainPanel = (MainPanel)getOPPanel(MainPanel.class);

if(e.getSource() == myMainPanel.button1){
// do something

}
// etc

Note that for this method to work, the class must extend from OPPanel.

Use of this method to determine who fired an event is not recommended for controllers of
many panels. The reason for this is that in order to determine which component fired the
event, you may have to test against every component from every registered panel in the
controller. Therefore, it’s recommended that you stick with the first method.

7. Not just GUI components can fire events…
The OPController is primarily designed for handing events from a GUI. If you examine the controller
however, you will see that it is basically a generic event listener. Therefore, you can ask the controller
to listen events fired from any source.

For example, say you have a motor device, which fires a PopertyChangedEvent every 5 seconds. So
long as the controller implements the PropertyChangedListener interface, there is no reason why it
can’t respond to the fired events. Furthermore, if you want to update a textfield in a GUI with the latest
values from the motor, you need only register the OPPanel containing the textfield to be able to write a
simple callback for the motor. To complete the application, you can control the motor settings through
the controller, by responding to user button clicks for example.

The resulting application is clear, and can be documented very easily.

8. Useful examples and references
Source code example: http://proj-stopmi.web.cern.ch/proj-stopmi/MotorExample.html
StopMI Wizard: \\pcslux10\production
StopMI Docs: http://proj-stopmi.web.cern.ch/proj-stopmi/sdocmi/Packages.html

Application

Motor

Controller

GUI Panel

PropertyChanged
events

User request to
change motor settings

Controller requests to
change motor settings

Controller request to
update interface

CB1*

CB2*

*CB1 is an ActionPerformed Callback
*CB2 is an PropertyChanged Callback

http://proj-stopmi.web.cern.ch/proj-stopmi/MotorExample.html
http://proj-stopmi.web.cern.ch/proj-stopmi/sdocmi/Packages.html

	The OPController
	1. What is it?
	2. What™s wrong with the normal method of ‚controlling™ my application?
	3. The OPController
	Other ‚Objects™
	One for all, or all for one?
	6. Writing the callbacks
	7. Not just GUI components can fire events–
	Useful examples and references

