
SL Technical note: last modified 01/03/01 by StopMI team - 1 -

Using Stopmi Tool

SL Technical note: last modified 01/03/01 by StopMI team - 2 -

INTRODUCTION

Welcome to Stopmi, a new way to create graphical user interfaces using the Java programming language.
This guide describes several steps required to use the stopmi framework: how to install the stopmi library in
your development tool and how to use those libraries.
Please read this documentation which contains a quick-start information to take off with Stopmi as well as
answers to the most frequently asked questions.
For further information on the documentation available please consult the Stopmi web page at:

http://proj-stopmi.web.cern.ch/proj-stopmi/

INCLUDING STOPMI LIBRARIES IN JBUILDER.

STEP ONE: MAPPING ONE OF YOUR DISKS IN WINDOWS EXPLORER.

The stopmi libraries are installed on a Unix server and can be accessed from a MS WINDOWS
environment. All you need is to map one of your disks on \\pcslux10\production (To map in Windows
explorer: Tools/MapNetwork Drive,and then fill in the path specified choosing a disk to map).

STEP TWO: ADDING STOPMI LIBRARY TO JBUILDER.

To add a new library in Jbuilder you need to follow these steps:

1. Once you have Jbuilder opened, press on the “Project” menu item in the menu bar.

Fig. 1.1

2. Select “Default Project Properties” from the pull down menu.

3. A dialog box appears with different tabs on the top. Stay on the “Paths” tab that is selected by default,
press on “Required libraries” which is another tab located in the middle of the dialog box.

4. Press the “Add” button.

http://mjorda.web.cern.ch/mjorda/stopmi/

SL Technical note: last modified 01/03/01 by StopMI team - 3 -

Fig.1.2

5. A dialog box appears where you can include those libraries you want the tool to read when compiling
your files. First of all you need to create a library from stopmi files.

6. Press “New”, a button you can find on the bottom of the dialog box.

7. The following window appears:

Fig.1.3

Fill in the first field specifying the name of the library, e.g. “Stopmi”. Leave the location option as it is set
by default (“User Home”). Then press “Add” to specify the path to the stopmi files.

SL Technical note: last modified 01/03/01 by StopMI team - 4 -

8. You will see another window that lets you manage your files. On the disk you have mapped with the
stopmi files, select the “stopmiLIB.jar” file which is under the stopmi directory and press OK.

Fig 1.4

Press “ADD” again and select the StopmiExternalLIB.jar to include it in the Stopmi library.

9. Press OK again and you will see a window where the newly created library has been included
(“Stopmi”). Select it, press ok and you will see that your library has been added to the “Required
libraries” area.

Fig. 1.5

SL Technical note: last modified 01/03/01 by StopMI team - 5 -

ADDING STOPMI BEANS TO JBUILDER PALETTE.

Note: this action can be performed if you have included the Stopmi library in your development tool, as
described in part1.

To include the stopmi beans on your palette, follow these steps:

1. Select the “Tools” option from the menu bar in Jbuilder and select “Configure palette” from the
pulling submenu.

Fig. 2.1

2. A palette properties window appears with two tabs at the top: “Pages” and “Add Components”.
“Pages” refers to the way that beans are organized on the palette.

3. Create a new page to include your stopmi beans. With the “Pages” tab selected press “Add” button.
Write the name of the new page you are creating.

Fig. 2.2

4. Once you have created a new page, you will see that it appears on the list of existing pages. Select the
page created and change the top tab to “Add components”.

Fig. 2.3

SL Technical note: last modified 01/03/01 by StopMI team - 6 -

5. Press the “Select library” button. Then select the Stopmi library you created with the first part of this
guide.

6. Press OK to get back to the “Palette properties” window. Press the “Install” button and look for the
Cern folder in the tree. Open the “Stopmi / Beans” folder and select all the OPBeans you find inside,
except by the OPLabTypes and BeanInfo files (to select more than one bean at a time, hold the
“CTRL” button when selecting the OPBeans).

7. Press ok and you will receive a message confirming that your beans have been added to your palette.

If you have followed the steps correctly, the OPBeans should now appear on your palette.

SL Technical note: last modified 01/03/01 by StopMI team - 7 -

CREATING A PANEL

1. Design by hand your interface.

Fig. 3.1 Example of an interface

2. The interface you have created is a Panel in Java, and the elements you have placed in your interface
like buttons, labels, textfields,..etc. are called “beans”. In Appendix 3 you can find all the beans that
Stopmi provides.

3. In Jbuilder open the file with the sufix “-mainPanel” that is been generated by the wizard. Your Panel
appears now opened in Jbuilder as source code. Click the Design tab at the bottom to open the
designer.

Fig. 3.2

This is what you see on the designer. The central square is your panel, you can enlarge it with your
mouse clicking and dragging the point in the corner.

Fig. 3.3 Designer

Pane

Click the arrows to
find the stopmi beans
you have included in

Properties
corresponding to
the object
selected on the
left, panel in this

SL Technical note: last modified 01/03/01 by StopMI team - 8 -

3.1 The OPPanel you are working with has the ”layout” property set to “XYLayout”. This is a trick
that will let you place the components wherever and with whatever size you like. After placing all
the components you will change the layout again to a simpler one, so your panel description will
not be so heavy and the components will adapt to a size change. For this layout conversion to be
effective you have to place your beans in a way that the tool can convert their position to a defined
layout. You can get this defining nested panels. (apendix 3 identifies the most common layouts
you can use).

3.2 Identify the nested layouts your interface could be composed of.

3.6 Place the OPPanels: Select the Stopmi beans page (1), click on OPPanel bean (2) and then
click to place it on the main area (3).

OPPanel

(2)

(1)

SL Technical note: last modified 01/03/01 by StopMI team - 9 -

Fig. 3.6

3.7 Adding successive OPPanels and resizing them you should get to this point:

Fig 3.7. Nested Layouts.

3.8 Start placing your OPBeans from the top layer to the bottom one. Follow the same 3 steps as
before but selecting the corresponding beans.

Fig. 3.8

NOTE: On the properties
panel on the right you can
change the OPBorder
property, so you can see
the panel you have placed
clearer.

(3)

Use the Properties Panel
on the right to change
labels, borders, fonts…
Consult the appendix 4 for
the meaning of the different

properties.

SL Technical note: last modified 01/03/01 by StopMI team - 10 -

3.9 Place the first four buttons and change its properties.

3.10 Continue placing components and remember that you can use the tree on your left to select
components, copy and paste, delete, etc and see how your panels are organized.

Fig. 3.10

3.11 Once you have placed all the components it is time to change the panel layouts. Remember
that you have worked with XYLayout and if you do not change this layout your panel definition
will be long, heavy and will not resize when you run your application.

Save time!: By pressing the
“ctrl” button while
selecting components, you
can change properties for
all the components selected
at the same time.

SL Technical note: last modified 01/03/01 by StopMI team - 11 -

3.12 Select one of the top panels, e.g. the one containing the four buttons and change the Layout
property to VerticalFlowLayout.

Fig. 3.11. Changing the layout

3.13 Continue converting the layouts that you have defined at the beginning of your design. If you
have only one component over a panel, change to BorderLayout (you use this panel below the
component because this is your first design, in the future you will not need it). When changing to
GridLayout, you can specify number of columns and rows clicking on “Gridlayout” on the tree on
your left. Figure 3.12 shows more layout changes and in figure 3.13 the borders of OPPanels have
been modified too.

SL Technical note: last modified 01/03/01 by StopMI team - 12 -

Fig 3.12 and Fig 3.13

3.14 Performing the last change:

Fig 3.14.

SL Technical note: last modified 01/03/01 by StopMI team - 13 -

The OPController

1. What is it?
The OPController was conceived to attempt to give a standard way for developers in SL to organise their
callbacks (listeners in Java terms). The aim was to effectively separate the visual part of the application (ie
the panel with buttons, lists etc) from the code that would perform tasks in response to users’ requests (ie a
button press). In addition, the controller attempts to ease the burden of setting up potentially hundreds of
listeners and gives the developer one method that will perform this task automatically. It is hoped that
developers who choose the OPController method of building GUIs, will produce well structured, clearly
defined, and standard applications.

2. What’s wrong with the normal method of ‘controlling’ my application?
Generally, developers will develop classes that encapsulate both GUI components (eg buttons) and the
corresponding event listeners.

This is normally the default for users of a GUI tool such as JBuilder (although the syntax differs slightly).
The alternative, is to collect the event listeners in a separate class like this:

Use of this method, clearly separates the actions from the GUI, and makes the application’s action code
clearly defined and easily maintainable (ie to fix a bug, the developer doesn’t need to wade through
hundreds of lines of irrelevant code to find the problem!) It should be made clear at this point, that

Application

MyPanel1 implements
ActionPerformedListener

Create button1
addActionPerformedListener(this)

…..

actionPerformed(){
… code goes here

}

MyPanel2 implements
ActionPerformedListener

Create button1
addActionPerformedListener(this)

…..
actionPerformed(){

… code goes here

}

Application

MyPanel12
Create button1
addActionPerformedListener(myEvLsner)

MyEventListener implements
ActionPerformedListener

actionPerformed(){
… code goes here

}

MyPanel1
Create button1
addActionPerformedListener(myEvLsner)

SL Technical note: last modified 01/03/01 by StopMI team - 14 -

choosing to separate the actions from the GUI components does not follow the object oriented nature of
Java, and Java purists should stop reading here! The potential advantages of doing this however, may make
you decide to choose this method.

With this arrangement, we satisfy the first wish made in section 1 – To separate the code from the GUI.
We still however, need to attach many callbacks to our components. This is were the OPController
framework can be used.

3. The OPController
The OPController, is basically a generic listener that can also hold other information pertaining to the
actions of an application. In its basic form, the controller has no listening capabilities. Therefore, in order
to create a useful controller, you will need to extend the base class, and implement the listeners you’re
interested in.

In Java terms this equates to the following:

MyController extends OPController implements ActionListener

Stating that you will implement the ActionListener interface, means that you must also implement the
actionPerformed() method to collect the resulting events.

Now that your controller has ActionListener capabilities, you can call one of the methods in the controller
(inherited from OPController) to register your panel with this controller. The following methods are
currently available in the OPController.

• addListenersNeeded(Container)
• Use this method to add listeners for the interfaces defined by your controller to all children of the

given container. Normally the container is an OPPanel, but it could be a menu for example.
• addListenersNeeded(Container, Class[])

• Use this method to add listeners for the specified interfaces to all children of the given container.
Of course, your controller will need to implement the specified interfaces for this to work. An
example here would be

myController.addListeners(myPanel,new Class[]{ActionListener.class});

• addListenersNeeded(Vector)
• Use this method to add listeners for the interfaces defined by your controller to the given

components (contained in the Vector).
• addListenersNeeded(Vector, Class[])

• Use this method to add listeners for specified interfaces defined by your controller to the given
components (contained in the Vector). Again, your controller must implement the given listeners.

Normally, you would use the first variant of the addListenersNeeded function. The other methods are
supplied for special cases.

MyPanel

MyController

ActionPerformed();

ActionListener

ActionPerformed();

SL Technical note: last modified 01/03/01 by StopMI team - 15 -

4. Other ‘Objects’
As well as managing callbacks for GUI components, the controller also has the facility to store references
to ‘Objects’. Anybody who has written Java applications will know that passing references to arbitrary
objects between different components of an application can cause considerable problems. Theoretically,
this reference problem can generally be solved by good, structured design of the OO hierarchy. In reality,
programmers of new Java software in SL will probably opt for a method similar to the one supplied by the
OPController, where they can expose references just like they do in ‘C’. That is not to say, that objects in
the controller are akin to ‘C’ global variables however!

The OPController solution to this problem is this. If you inform the OPController of the existance of an
Object, by passing its reference, the controller code (ie your code) can access this object by querying its
controller. For example, if I have an object of type ‘CurrentUser.class’, and I have two controllers (c1 &
c2) that wish to examine this class, you would have something like the following:

CurrentUser user;
c1.addObjectReference(user);
c2.addObjectReference(user);

From anywhere within the controller, it is then possible to display the user information like this:

CurrentUser user = (CurrentUser)(this.getObject(CurrentUser.class));
System.out.println(“CurrentUser::”+user);

The more astute Java programmers, will be thinking “what if I have two objects of the same class?”. The
answer is that, at the moment, you can’t! Therefore, if you want to pass an object reference to a controller,
it needs to be a unique class. This in itself is not a bad thing, as it may encourage developers to encapsulate
data and methods in class files, where they might otherwise have not done so. Nevertheless, this
shortcoming still exists, and may be addressed in the future if demand dictates.

5. One for all, or all for one?
Given the design of the OPController, you have the freedom to organise your panels, objects and
controllers in any way you wish. You could for example, have an application with 6 OPPanels contained in
a tabbed pane, each with its own controller which will be given Object references to the objects it needs to
act on.

Application

Object1 Object2

Panel2 PanelXPanel1

Controller1 Controller2 ControllerX

SL Technical n

On the other hand, you could choose to have one controller for your entire application like this:

Whichever way you choose depends

6. Writing the callbacks
The way in which you will write you
efficiency reasons, you may want to
if/else combinations for large GUIs)
functions to discover who is firing th

• getOPPanel(Object obj)
• This function will return a r

(which should be a GUI com
work, you should have add

 ‘myController.addL

Once you know the parent

Public void actionPerf
// get the annonymo
OPPanel parent = ge

// find which panel
if(parent instanceo

// we know it
MyPanel myP =
// find the e
if(e.getSourc

// do s
}

}else if(parent ins
// we know it
MyPanel2 myP
//find the ex
if(e.getSourc

// do s
}

}
// etc

Application

Object1

Panel2 PanelXPanel1

Co
ntroller
ote: last modified 01/03/01 by StopMI team - 16 -

 on the application and is up to you.

r callbacks is down to you. It’s important to note however, that for
 determine which Panel an event was fired from (this avoids countless
. In order to facilitate this, the controller provides some convenience
e events. These are as follows:

egistered OPPanel, which is the visual parent of the given object
ponent reference obtained from the event source). In order for this to

ed the component through the function

istenersNeeded(myMainP)’.

of the object, you can create your event handler as follows:

ormed(ActionEvent e){
us parent
tOPPanel(e.getSource());

 it came from
f MyPanel){
 came from MyPanel
 (MyPanel)parent;
xact component
e() == myP.button1){
omething

tanceof MyPanel2){
 came from MyPanel2
= (MyPanel2)parent;
act component
e() == myP.text1){
omething

Object2

SL Technical note: last modified 01/03/01 by StopMI team - 17 -

You should see, that using this method, you can separate events from different panels and act on
them accordingly.

• getOPPanel(Class toSearchFor)
• This function will return a registered OPPanel, which has the same class as the given argument.

So, if you had a distinct class for you panel, called ‘MainPanel.class’, and you added it to the
controller by performing ‘myController.addListenersNeeded(myMainP)’, you can retrieve a
reference to this panel in you callback. With this reference, you can create, for example, an
ActionListener callback like this:

Public void actionPerformed(ActionEvent e){
MainPanel myMainPanel = (MainPanel)getOPPanel(MainPanel.class);

if(e.getSource() == myMainPanel.button1){
// do something

}
// etc

Note that for this method to work, the class must extend from OPPanel.
Use of this method to determine who fired an event is not recommended for controllers of many
panels. The reason for this is that in order to determine which component fired the event, you may
have to test against every component from every registered panel in the controller. Therefore, it’s
recommended that you stick with the first method.

7. Not just GUI components can fire events…
The OPController is primarily designed for handing events from a GUI. If you examine the controller
however, you will see that it is basically a generic event listener. Therefore, you can ask the controller to
listen events fired from any source.

For example, say you have a motor device, which fires a PopertyChangedEvent every 5 seconds. So long
as the controller implements the PropertyChangedListener interface, there is no reason why it can’t respond
to the fired events. Furthermore, if you want to update a textfield in a GUI with the latest values from the
motor, you need only register the OPPanel containing the textfield to be able to write a simple callback for
the motor. To complete the application, you can control the motor settings through the controller, by
responding to user button clicks for example.

The resulting application is clear, and can be documented very easily.

8. Useful examples and references
Examples: http://proj-stopmi.web.cern.ch/proj-stopmi/MotorExample.html
StopMI Wizard: \\pcslux10\production
StopMI Docs: http://proj-stopmi.web.cern.ch/proj-stopmi/sdocmi/Packages.html

Application

Motor

Controller

GUI Panel

PropertyChanged
events

User request to
change motor settings

Controller requests to
change motor settings

Controller request to
update interface

CB1*

CB2*

*CB1 is an ActionPerformed Callback
*CB2 is an PropertyChanged Callback

http://proj-stopmi.web.cern.ch/proj-stopmi/MotorExample.html
http://proj-stopmi.web.cern.ch/proj-stopmi/sdocmi/Packages.html

SL Technical note: last modified 01/03/01 by StopMI team - 18 -

Appendix 1. LAYOUTS

FlowLayout

This is the simplest of the AWT layout managers. Its layout strategy is:

 - lay out as many components as will fit horizontally within a container
 - start a new row of components if more components exist
 - if all components can not fit, they are not shown.

BorderLayout

BorderLayout is probably the most useful of the standard layout managers. It defines a layout scheme that
maps its container into five logical sections:
The first thing going through your mind should be "but I will never have a GUI that looks like that!"
Moreover, you are probably correct. However, the secret is in mastering its nesting capabilities, and using
two or three of the logical sections. (It’s very rare that you’ll actually use more than three of the positions in
a container at once).

GridLayout

GridLayout lays out its components in a grid. Each component is given the same size and is positioned left-
to-right, top-to-bottom. When specifying a GridLayout, there are two main parameters: rows and columns.

SL Technical note: last modified 01/03/01 by StopMI team - 19 -

Appendix 2. How to create popupmenus.

PopUpMenus are small windows that appear when you click the right button of your mouse on a
component. You can create these menus when designing your panel with Jbuilder:

1. Click on OPPopUpMenu on the palette and paste it anywhere on your panel.
2. You will see that in the tree facility of Jbuilder the “Menu” folder is open and your Popupmenu

has been added:

3. Click twice on the new oPPopupMenu1 placed on the above mentioned tree.

4. Your Panel is not shown now and a new visual designer appears. This is the designer used by
Jbuilder to create PopupMenus.

5. Click twice on the small square to start creating your menu. You have a small palette to add new
items, separators, submenus…

6. Once you have finished creating your OPPopUpMenu, click on one of the OPBeans from
the tree in Jbuilder tool to see your main panel again.

7. The popupmenu you have just created is part of your Panel, so you can have a reference
to it as to the other variables on the Panel.

	Using Stopmi Tool
	INTRODUCTION
	INCLUDING STOPMI LIBRARIES IN JBUILDER.
	STEP ONE: MAPPING ONE OF YOUR DISKS IN WINDOWS EXPLORER.
	
	
	
	
	
	Fig.1.3

	Fig. 3.1 Example of an interface
	
	
	Fig. 3.2

	The OPController
	1. What is it?
	2. What™s wrong with the normal method of ‚controlling™ my application?
	3. The OPController

	4. Other ‚Objects™
	5. One for all, or all for one?
	6. Writing the callbacks
	7. Not just GUI components can fire events–
	8. Useful examples and references
	BorderLayout
	GridLayout

